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Abstract

This work proposes a method, aiming the 3D skeleton sequence, for the human action recog-
nition by fusing the attention-based three-stream convolutional neural network and support
vector machine. The traditional action recognition methods primarily employ RGB video as
input. However, RGB video has issues with respect to large data volume, low semanticity,
and ease of making the model interfered by irrelevant information such as the background.
The efficient and advanced human action information contained in the 3D skeleton sequence
facilitates human behavior recognition. First, the information of 3D coordinates, temporal-
difference information, and spatial-difference information of joints are extracted from the
raw skeleton data, and the above information is input into the respective convolutional neural
networks for pre-training. Then, the pre-trained network model extracts the feature contain-
ing the spatial-temporal information. Finally, the mixed feature vectors are input into the
support vector machine for training and classification. Under the X-View and X-Sub bench-
marks, the accuracy on the open dataset NTU RGB+D is 92.6% and 86.7% respectively,
demonstrating that the method proposed for incorporating multistream feature learning,
feature fusing, and hybrid model can improve the recognition accuracy.

Keywords Skeleton-based human action recognition - Convolutional neural network -
Attention mechanism - Support vector machine - Spatial-temporal feature

1 Introduction

Recently, owing to the development of deep learning and graphics processing unit, computer
vision techniques are used to handle a variety of tasks in daily life [4-8] and medical field
[11,27, 28, 34, 57, 60, 64]. As an active topic in the field of computer vision, human action
recognition has an extensive range of applications, such as the intelligent video surveillance
systems [67], human-computer interaction [69], driverless [66], and sports body analysis
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[21]. The accuracy of human action recognition models is generally based on the action
representations. Therefore, several researchers have focused on the efficient extraction of
the robust action features.

The previous research on human action recognition is based on RGB data [1, 12, 51].
RGB data-based research finds extensive applications owing to the RGB data being ubig-
uitous in daily life. However, the data has the problems of large data volume, low semantic
meaning, and is easily disturbed by the viewpoint, illumination, and complex background.
Thanks to the continuous development and application of sensor technology, such as
Microsoft’s Kinect sensor, several researchers have explored the human action recognition
methods based on the depth data and 3D skeleton sequence data. Compared with the RGB
video recorded by the traditional 2D cameras, the skeleton sequence data, as an advanced
feature, contains rich information about the human body structure and can provide an effi-
cient and robust representation for describing the human action with complex contents [62].
Therefore, the feature representation methods based on the skeleton sequence data have
recently been utilized for human action recognition [18, 53].

For the previous skeleton-based human action recognition methods, the researchers pri-
marily have conducted experiments by manually designing and extracting the descriptors
of joints for human actions. Then machine learning algorithm is used to classify actions.
However, manual feature has a limited ability to characterize human actions, hence the
model recognition accuracy is insufficient. Representative works include [22, 36, 49, 52,
56]. In the field of deep learning, skeleton-based human action recognition methods mainly
include recurrent neural network (RNN), convolutional neural network (CNN) and graph
convolutional network (GCN). As a kind of non-Euclidean data, human skeleton topol-
ogy needs to be rearranged to construct a data form for RNN and CNN training. In
addition, RNN-based methods tend to deal with time series data, but lacks the ability of
spatial modeling. GCN-based methods can handle non-Euclidean data, but it needs to con-
sume a lot of computing resources. CNN-based methods not only have powerful high-level
feature learning capability but also have the characteristics of few parameters and fast
calculation speed.

There is redundant joint information in human actions. Therefore, focusing the model on
the critical joint information is beneficial for human behavior recognition. The CNN is able
to extract advanced features. Furthermore, the machine learning algorithm can solve sev-
eral problems [2, 3, 63] with a rigorous theoretical foundation and powerful generalization
capabilities. As a consequence, we combine the CNN with the machine learning algorithm
as a hybrid model for skeleton-based human action recognition.

The main contributions of this paper are writon in bullet points as follows.

(1) A new traversal order of skeleton joints has been adopted to model the human body,
which is conducive for retaining the correlation between the adjacent joints and for an
efficient and adequate extraction of the co-occurring features of the joints.

(2) Based on the joint traversal order proposed in this paper, three streams of joint
sequence information with diversity and complementarity have been constructed,
which is conducive for mining spatial-temporal features.

(3) This paper proposes an attention-based three-stream CNN (A3SCNN) model which
can hierarchically extract the joint spatio-temporal features with robustness, besides
focusing on the critical joints in the action.

(4) This paper proposes a hybrid model for skeleton-based human action recognition by
fusing A3SCNN and SVM. A3SCNN, as a feature extractor, is performed to obtain
spatio-temporal features. We choose SVM to classify actions. Compared with the
black-box property of neural networks, the SVM has the support of a solid and rigorous
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mathematical theory which is beneficial for improving the generalization ability of the
model.

2 Related work

The above methods [22, 36, 49, 52, 56] are traditional ones that rely on the manually
designed behavioral features. The features have limited ability to represent actions, which
in turn leads to poor model generalization. Alternatively, the deep learning has achieved far
better results in RGB-based data than with the traditional methods, hence several researchers
have also attempted to combine the deep learning with the skeleton sequence data. In this
section, we review and discuss some respective deep learning methods for skeleton-based
human action recognition.

RNN-based methods The RNN and its variants, viz., the long short-term memory network
(LSTM), are special recurrent neural networks proposed to solve the gradient problem aris-
ing from the long-time dependence of the data and backpropagation [32]. To meet the input
requirements of the RNN model, the skeleton sequence information needs to be converted
into the form of a time series of joints. One line of works [14, 31] focus on the skeleton
data form with joint co-occurrence features. Other works attempt various techniques, such
as attention mechanism [31], regularization techniques [68] and novel model structure [25,
39, 65] to improve the model’s ability to extract features. Furthermore, Pan et al. [37] have
proposed a multi-level LSTM model based on skeleton sequences. The model first inputs
the data of each joint and its parent joints into a fine-grained subnet, and then structures
and fuses the features of the upper and lower body, separately. Considering the correlation
between the joints, Shen et al. [42] have proposed a skeleton human behavior recognition
method based on a complex network for the skeleton feature extraction combined with the
LSTM. Although the RNN can adequately extract the time-domain information of the skele-
ton sequence data, it is difficult to extract the high-level features of the skeleton sequence
data owing to the insufficient extraction of the space domain information of the skele-
ton sequence data. However, RNNs has poor spatial modeling capability. Besides, RNNs
also has problem of difficulty in training, owing to the gradient disappearance and gradient
explosion.

GCN-based methods The human skeleton is a natural topological graph, and the vertices
and edges represent the joints and bones, respectively. Researchers tried to apply GCN
to modeling human skeleton. Yan et al. [59] have constructed spatial temporal graph of a
skeleton sequence and proposed the spatial-temporal GCN (ST-GCN), where a series of
spatio-temporal graphs convolution blocks is stacked for spatial-temporal modeling. Upon
the baseline, researchers pay attention to adjacency powering which is used for multi-scale
modeling [16, 26, 33, 58]. In addition, attention mechanism embedded in the backbone
network [46, 61] and multi-stream framework [44, 45] improve the model performance.
ST-GCN and its variants has already achieved encouraging results and became the main-
stream method for skeleton-based human action recognition [17]. However, above methods
based on GCN spend a lot of computational resource in matrix operations and are subject
to limitations in robustness and scalability.

CNN-based methods Similar to RNN-based method, the skeleton sequence information
needs to be converted into a 2D pseudo-image form to meet the input requirements of the
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2D-CNN. Thus, several works [20, 24, 29] try applying CNN to the skeleton sequence data.
This stream framework takes a hierarchical approach towards learning the co-occurrence
features of the joints, and hence the joint features at different levels are gradually aggre-
gated. Different from above methods, other forms of 2D input have been used for CNN.
Caetano et al. [9] have adopted a novel form of the joint representation, viz., tree struc-
ture reference joints images. The constructed skeleton sequence information has been fed
into a self-built CNN for training and classification. Besides, Ding et al. [13], have used
skeleton-based square grid approaches to describe the human actions, and used CNN for
the action classification. In order to better extract the temporal and spatial features, some
works [30, 38] tried to construct 3D input for 3D-CNN. Furthermore, Duan et al. [15] has
constructed novel data structure, namely 3D heatmap volume, and used 3D-CNN model to
extract features. This method achieves the state-of-the-art on skeleton-based human action
recognition benchmarks and reflashes CNN. Compared with the RNN-based method, CNN-
based method has excellent advanced information extraction capabilities and can learn the
advanced features efficiently and easily. In addition, CNN-based method has relatively
fewer parameters and faster calculation than GCN-based method. Concomitantly, the pro-
cess of network model training is less prone to problems such as the overfitting, gradient
explosion, or gradient disappearance.

Other methods Different from above deep neural networks, Transformer was originally
designed to solve problems related to natural language processing (NLP) [40, 41]. Trans-
former has achieved great success in the NLP field, which has also driven its exploration
in the field of human action recognition [10, 35]. Compared to traditional CNN models,
Transformer is a simple and extensible framework that can obtain long-term dependent
information and global information. Besides, attention module can further improve the per-
formance of Transformer. Similar to GCN-based method, the Transformer consumes a lot
of computing resources.

3 Method

The general framework of the proposed attention-based three-stream convolutional neural
network, which is fused with the SVM for the skeleton-based human action recognition
method, is displayed in Fig. 1. Our method can be divided into three main parts, viz., multi-
stream data construction module, feature extraction module, and classification module.
First, we need to construct three streams data with spatial-temporal feature in 2D pseudo-
image form to meet the input requirements. We perform the time domain differencing
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Fig.1 Framework of the proposed method
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and space domain differencing on joint 3D coordinate information C to obtain the joint
time-domain differential information 7, and joint space-domain differential information S,
respectively. Joint 3D coordinate information C, joint time-domain differential informa-
tion T and joint space-domain differential information S are employed to characterize the
skeleton-based human action.

Then, C, T and S are input to the sub-network of the corresponding feature extraction
module, for spatial-temporal feature extraction. The three obtained feature vectors are then
concatenated by channel dimension. The spliced feature vectors are input to the public net-
work of the feature extraction module for extracting the global features. Subsequently, the
attention module allows the network model to focus on the critical features. The feature
vectors of each human body in the action are feature fused to achieve the representation of
the multi-person interactive actions.

Finally, the fused feature vectors from feature extraction module have been employed to
train and classify the SVM to complete the human behavior recognition based on the 3D
skeleton sequence data.

3.1 Multi-stream data construction module

Owing to the error of the camera acquisition, plenty of useless information forms in the
raw skeleton dataset, and hence, the pre-processing of the skeleton data is required. Fur-
thermore, it is necessary to construct the multi-stream skeleton sequence data to meet the
input requirements of the method in this paper, i.e., a four-dimensional array RF*M>xNxV
where P is the number of human bodies in the action, M the number of frames in the action
sequence, N the number of joints required to describe the human body, and V the coordinate
dimension of the joints.

3.1.1 Description of human skeleton

The human skeleton can be partitioned into the torso, left arm, right arm, left hand, right
hand, left leg, right leg, left foot, and right foot. A natural correlation between the body parts
and the skeleton data can be seen as a sequence of adjacent joints with certain dependency.
At the same time, the co-occurrence of joints can describe human behavior to a certain
extent. For example, the interaction of the joints of the left and right hands can describe the
behavior of “clapping”, and the interaction of the joints of the trunk, and the left and right
legs, can describe the behavior of “sitting”.

Therefore, describing the human skeleton by using the joints rationally, enables the
efficient tapping of the correlation and co-occurrence of the joints, and extract the spatial-
temporal characteristics of the joints. The original human body joints of the NTU RGB+D
dataset are displayed in Fig. 2. We propose a new human skeleton joints description, which
fully reflects the natural correlation of joints. For the 3D coordinates of the joints of the
human body, i.e., V=3, we define

Ji=(x,y,2) (H

where i = (1,2, ...,25) is the joint of the human body. The original traversal order of
joints breaks the connection between the adjacent joints, and therefore, not conducive for
extracting the spatial-temporal features of the joints. Thus, our method adjusts the traversal
order of the joint points and re-describes each part of the human body.
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Fig.2 The original human body joints

Jarmss Jtrunks Jieftieg, and Jrigniieg are the joints forming the arms, body, and the left
and right legs, respectively. They are formulated as

Jarms = {24, Jas, J12, J11, J10, Jo, o1, Js, Je, J7, I8, J23, S22} (2)
Jirunk = {Ja, J3, J2, J1} 3)
Jiefrieg = {17, J18, J19, Ja0} “4)
Jrightteg = {J13, J14, J15, J16} 5

Accounting for the connection between the limbs and the trunk, the human skeleton is
modeled in this paper using the 3D coordinates of 29 joints, i.e., N=29. We formulate it as
Person = {Jarms., Jbodyv -]leftlegs Jbody, -Irightleg}
= {4, D25, J12, J11, J10, Jo, Ja1, Js, Jg,
J7, J8, J23, Jo2, Ja, I3, J2, 1, D17, T,
19, J20, Ja, J3, J2, J1, J13, J1a, Jis, Ji6} (6)
Considering the different lengths of each action sequence in the skeleton dataset, we
make the model maximally light, besides preserving the integrity of the action sequences.

We have randomly selected 32 frames in each 3D skeleton sequence to construct the sample
data, i.e., M=32.

3.1.2 Constructing three-stream skeleton data

According to the human skeleton description proposed in 3.1.1, 32 frames of skeleton
sequence information have been randomly selected from the action sequences using the
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equal interval random selection method for constructing the multi-stream skeleton sequence
information, which satisfies the input requirements of the A3SCNN.

(a) We define J i’ = (x, y, z) as the coordinate of a 3D joint of a human body in the action
sequence. Further, the 3D coordinate information of a human skeleton sequence with
M action frames and N joints can be described as

C={J1i=0,2,.,N),t=(,2, ., M} (7

where Cisa M x N x V array.

(b) To describe the spatial-temporal and co-occurrence properties of the human skele-
ton sequence, we construct the time-domain differential information 7 of the joint
sequence. T represents the motion information of the same joint between adjacent
frames, which can reflect the spatial-temporal characteristics of the joint motion. It can
be formulated as

T = — g, —d T =T ®)

where Tisa M — 1 x N x V array.

(c) Furthermore, we construct the space-domain differential information S of the joint
sequence. S represents the distance information between the adjacent joints in the same
frame, which can reflect the spatial characteristics of the action. It can be formulated
as

S={J] =, =T Iy =I5 ©)
where Sisa M x N — 1 x V array.

We perform zero filling on the missing dimensions of T for unifying the dimensions of
the three skeleton sequence information, S. All of them obtain the three-dimensional array
of M x N x V. Thus, this paper constructs the three skeleton sequence information with
diversity and complementarity and uses them as the input of the A3SCNN.

3.2 Feature extraction module

This module first employs the constructed multi-stream data to pre-train the A3SCNN. Fur-
ther, the feature extraction is performed using the pre-trained A3SCNN. Finally, we adopt a
multi-person feature fusion strategy to achieve the description of the multi-person actions.

3.2.1 A3SCNN

We take the original skeleton sequence data through the multi-stream data construction
module to obtain the joint 3D coordinate information C, joint time-domain differential
information 7, and joint space-domain differential information S. The above three skeleton
sequence information is fed into the feature extraction network in parallel for the feature
extraction, including a series of operations such as the convolution, pooling, and feature
fusion. Then the multi-person feature fusion is performed to obtain the representation of the
multi-person interactive actions. Finally, the prediction of action categories is accomplished
through the fully connected layer. The network model designates Cross Entropy Loss as
the loss function to calculate the difference between the true and predicted probability
distributions. The loss value is calculated as

Loss ==  p(xi)In(q(xi)) (10)

i=1
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where n denotes the sample category, p(x;) and ¢ (x;) are the true and predicted probability
distributions, respectively, corresponding to the variable x;. The structure of the A3SCNN
is displayed in Fig. 3.

Three-stream convolutional neural network The first stage can learn the point-level rep-
resentation of 3D coordinates witha 1 x 1 (Conv1) and 3 x 1 (Conv2) convolution layers. We
select the rectified linear unit (ReLLU) for the activation function to accelerate the training
and prevent the vanishing of the gradient which is defined as

f(x) = max(0, x) an

The standard convolution procedure is expressed as
Vi = Y D g wi + b (12)

iemy jeny

where xi’f j denotes the value of the point (i, j) of layer k, wl’.‘ j the weights on the convolution

kernel, b¥ the bias value on the convolution kernel, m;, and n,, the height and width of the
receptive field, respectively, yi]f j the output value of the point (i, j) of layer k, and f"h*"w (.)
the sparsification using the ReL U activation function following a convolution operation with
a convolution kernel size mj;, X ny,.

The second stage performs the feature learning on the joint sequence, which contains
two convolution layers. First, the joint and channel dimensions are swapped by transposing
the feature map. The general process is denoted as

XMW Transpose (X**€) (13)
This stage contains two convolution layers with a kernel size 3 x 3 and channels (32, 64),
respectively, and a Maxpooling layer with stride 2. The three skeleton sequence data are
processed through their respective sub-networks for the feature extraction, and three feature
vectors Fc, Fr, and Fs are obtained. They are described as

Fc <« Subnetwork - C(C) (14)
Fr < Subnetwork - T(T) (15)
Fsg <« Subnetwork - S(S) (16)

The third stage inputs the multi-view feature vector into the public network for the global
spatial-temporal feature learning. The above feature vectors of the three different views are
concatenated by the channel dimension to obtain Fys;on as

Frusion < Concat(Fc, Fr, Fs) (17)

Input Feature Extraction Network-A3SCNN Multi-person Fully Connected
— . Action Description
Conv3  Conv4 \: 3 4 Layer

Convl Conv2  Transpose
c 3x3x32  3x3x64 Iy
T Ixlx64 3x1532  (02.]) 2 3 !
1 Com3 Comd | Coms Coms | e
onve | .
| Convi| | Conv2 | Transpose s o onv ony 1 Multi-person 256 Fe8
T 1x1x64 3x1x32  (0,2,1) 3><;;2><32 3X72><64 3><3/><2255 3x3x512 \: Feature Fusion Dropout 60 Loss
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! Conv3  Conv4 I
onvl Conv2 ans, (a1ak; 1
5 e [3axs2. oo BIA2 364 i
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Fig.3 The structure of the A3SCNN
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Then, all the subsequent convolution layers extract the global spatial-temporal features. The
obtained vector Fj, is denoted as

Fip <= PublicNetwork(F fysion) (18)

F;, is passed through convolutional block attention module (CBAM), allowing the model
to focus on the critical joint features. The obtained vector F,,, is denoted as

Four < CBAM(F;;,) 19)

The feature vectors of the different human bodies are fused to represent the multi-person
interactive actions. Through several comparison experiments, the strategy of max feature
fusion achieves the best results. The obtained vector F is described as

F < MaxFusion(F,,;) (20

Finally, the extracted feature vectors are input to the fully connected layer to calculate
the loss value for backpropagation. Fc7 employs the Dropout strategy, which lets the neu-
rons deactivate with a certain probability for alleviating the overfitting phenomenon of the
network. By comparing multiple experimental groups, the best classification results have
been obtained for the inactivation probability 0.5.

Attention mechanism The attention plays a vital role in the human perceptual system. The
human visual system selectively focuses on certain salient parts through a series of local
observations, instead of processing the whole scene at once. Skeleton sequence information
contains temporal and spatial information about each joint. However, only the joint infor-
mation that is useful for the action classification is of interest. The traditional convolutional
neural networks cannot focus on the critical joint information, and different joints contribute
differently to the action recognition. This work adds an attention mechanism after extract-
ing the global spatial-temporal features of joints, for focusing the network on the critical
joint information and ignoring the redundant joint information. Thus, the network can focus
on the critical joint information and extract more robust spatial-temporal features of joints.
We choose to place the integration position of the attention mechanism after extracting the
global spatial-temporal features of the joints, by considering the different contributions of
different joints in each frame of the skeleton sequence for action recognition. This is to
reduce the influence of the locally optimal joints on the action recognition and thus achieve
the global optimum.

We have used the CBAM, which can assign different weights to the extracted fea-
tures, to indicate the importance of the features [54]. The CBAM innovatively proposes
to combine the channel and spatial attention mechanisms with a serial structure. Owing to
its lightweight and end-to-end characteristics, it can be seamlessly integrated into convo-
Iutional neural networks, besides effectively improving the performance of convolutional
neural networks. The structure of the CBAM is displayed in Fig. 4.

Channel Attention Module
[y
™ \JT =4 J Y
MaxPool
i A S _A

AvgPool Shared MLP

Spatial Attention Module

Conv

2100

Channel Attention
M.

—> — >
P

F'=MQF,, [MaxPool,AvgPool] Spatial Attention ) F,,~MsQF "
Ms

Fig.4 The structure of the CBAM. @ denotes element-wise multication, ® denotes element-wise summation
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The CBAM is a serial architecture and contains two sub-modules, viz., the channel atten-
tion module and the spatial attention module. The workflow of the CBAM is shown below.
The initial step is to input the extracted feature vectors F;, to the channel attention mod-
ule and assign different weights to the different channels. First, the global max pooling and
global average pooling operations have been employed to aggregate the channel informa-
tion of the feature vector Fj, to obtain Fy,, and Fj,,. Then, Fj,, and Fj,, are sequentially
passed through a shared multilayer perceptron. The number of neurons in the hidden layer of
this multi-layer perceptron (MLP) is half the number of neurons in the input layer. Finally,
the feature vectors, after passing through the MLP, are summed element by element and
fed into the Sigmoid activation function to obtain the weight vector M, for each channel.
The element-by-element multiplication of M, and F;;, yields the feature vector F’ after the
channel attention module. The Sigmoid activation function is defined as

1
Si id = 21
igmoid(x) = (21)
M. (Fip) = Sigmoid(MLP(AvgPool(Fin)) + MLP(MaxPool(Fi,))) (22)
F' =M. ® F, (23)

The second step is to input the feature vector into the spatial attention module. First, the
global max pooling and global average pooling operations are employed to aggregate the
spatial information of the feature vector F’ to obtain F,, and Fy,,. Further, they are con-
catenated and convolved by a standard convolutional layer. The convolution kernel size of
this convolution layer is 3 x 3 and the activation function is RelLU, i.e., f 3x3, Finally,
the feature vector obtained after the convolution operation is input to the Sigmoid activa-
tion function to obtain the weight vector on the spatial pixels M. The feature vector F,;
obtained after the CBAM is obtained by multiplying M, and F’ element by element. The

calculation process for both the modules is given as

M(F') = Sigmoid(f>3([AvgPool(F'); Max Pool(F')])) (24)
Fout = MS®F/ (25)

The network learns the global co-occurrence features of all joints. The critical joints play
an important role for the human behavior classification tasks. The channel attention module
enables the model to focus on those important joints and can build the dependencies between
the non-adjacent joints, which helps to improve the model performance. For example, in
the action of “put on a shoe”, the joints that form the arm and leg are not adjacent. The
channel attention module in the network focuses on the joints that form the arms and legs,
and applies greater weight to the relevant feature information, while the spatial attention
module can focus on the spatial-temporal information of the critical joints in the action and
focus more on the critical features. Thus, the CBAM allows the network to focus on the
critical spatial-temporal feature information of the critical joints in the action to improve the
generalization ability of the model.

3.2.2 Multi-person action description
Human actions include the multi-person interactions, such as handshakes and hugs, and
single-person actions. We have adopted a multi-person feature fusion strategy to achieve the

description of the multi-person actions. The skeleton sequence information of the interactive
action is a four-dimensional array of P x M x N x V, where P is the number of human bodies
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in the interaction action. The feature extraction network performs the feature extraction on
the skeleton sequence information of different human bodies in the interactive actions. The
feature vector for each person is described as

Fouri = [xi, xéa ey xémg] (26)

where i = (1, 2, ..., P). The feature vector F' with spatial-temporal characteristics, obtained
after the fusion of multi-person features, is described as

F

[x1, x2, ..., X2048]

MaxFusion(Four1, Four2, . Fourp)

[max(xll,x%, xlp), max(x%, x%, xf),

1 2 P
veey maX(XQ048, x2048, veey x2048)] (27)

The structure of the multi-person action description module is displayed in Fig. 5. The
feature fusion strategy of this module belongs to late fusion, which has the following two
advantages compared to the early fusion [23]. First, the scalability of the model is excellent,
and it can be extended to classify the actions of the varying number of people. Secondly,
the skeleton information of different people in the multi-person interaction behaviors is
extracted by a feature extraction network with shared parameters, and hence, no additional
parameters are added to the model, which makes the model efficient and lightweight.

3.3 Multi-classification SVM

The feature vectors F that can describe the 3D skeleton sequences have been obtained, and
they are trained and predicted using a multiclassification SVM. The SVM is a classical
machine learning model for the binary classification tasks and is a supervised algorithm
[48]. SVM maps samples from a linearly indivisible low-dimensional space to a linearly
divisible high-dimensional space through a kernel function, and achieves the classification
by finding the optimal segmentation hyperplane. The generally used kernel functions are the
linear kernel, radial basis function (RBF) and polynomial kernel. The RBF, also known as
Gaussian kernel, has the advantages of a strong local characterization, high flexibility, high
applicability, and few computational parameters. We have finally selected RBF as the kernel
function through comparison experiments. The formula for RBF is described as K (x;, x;) =

2 . A
exp(—y ||x,- —Xj || ). y is an artificially set parameter. x; and y; are feature vectors. After

(Different Person Data ) (~Parameters Shared "\ (" Feature Fusion )

Personl _lyl Feature Extraction F
RN Network o Lowr;
Input Person2 Feature Extraction 4 Fully Connected
RPx}l/II)xNxV RN —r Network o Fo . F' 1> yLayer

. . . .

PersonP _L| Feature Extraction F '

RN Network B L our :

\ VAN VAN J

Fig.5 The structure of the multi-person action description module
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introducing kernel function, the problem that SVM needs to solve is described as

60
min %Hw”mll2 + Cost ) e
wm b g i=1 (28)
st.yi[(w™ e p(F)) + "] = 1 — g™
g"m>0,m=1,2,..60,n=1,2,...,60

where w is the normal vector, which determines the direction of the hyperplane, an b is
the displacement term that determines the distance between the hyperplane and the origin.
Further, y; € {m,n},i = 1,2, ...56880, kernel function ¢ maps the input low-dimensional
sample F to the high-dimensional space, ¢; denotes the slack variables, and Cost is the
regularization parameter. The implementation of our method is displayed in Algorithm 1.

Input: D = {(x@, y®)|i=1,..,56880}, SVM, RBF, Cost, Epoch
Qutput: Action categories Prediction

1: obtain Dy, 4i, and D;.s; under the benchmark.
2: initialize A3SCNN parameters w.

3: for i=1,2,...,Epoch do

4: train A3SCNN with Dy, 4ip.

5: test A3SCNN with Dy, .

6 obtain Accuracy; using (29).

7 obtain parameters w; .

8 ifi > 1and Accuracy; > Accuracy;_
9: update w = w;

10: end
11: obtain F using (20) with parameters w.
12: obtain Prediction using (28).

Algorithm 1 The implementation steps of this method

4 Experiments
4.1 Dataset

The NTU RGB+D dataset from Nanyang Technological University, Singapore, has been
captured simultaneously by three Microsoft Kinect V2 cameras at different angles. This
dataset contains 56880 skeleton sequences in 60 action categories performed by 40 volun-
teers. Out of a total of 60 action categories, the first 50 action categories are single-person
actions, and the last ten action categories are two-person interactions, with each human body
containing 25 3D joint coordinates. The original paper [39] of the dataset recommends two
benchmarks. The first one is the (1) cross-subject (X-Sub), and under this benchmark, 40
volunteers are split into two groups, with the first group having 40320 skeleton sequences
as the training samples and the second group having 16560 skeleton sequences as the test
samples. The second one is the (2) cross-view (X-View), and this benchmark uses the skele-
ton sequences recorded by cameras 2 and 3 for the training samples, totaling 37,920, and the
skeleton sequences recorded by camera 1 for the test samples, totaling 18,960. The specific
action categories in the NTU RGB+D dataset are shown in Table 1.
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Table 1 Action category of the NTU RGB+D dataset

Action number Action category Action number Action category Action number Action category
1 drink water 21 take off a hat/cap 41 sneeze/cough

2 eat meal 22 cheer up 42 staggering

3 brush teeth 23 hand waving 43 falling down

4 brush hair 24 kicking something 44 headache

5 drop 25 reach into pocket 45 chest pain

6 pick up 26 hopping 46 back pain

7 throw 27 jump up 47 neck pain

8 sit down 28 phone call 48 nausea/vomiting
9 stand up 29 play with phone/tablet 49 fan self

10 clapping 30 type on a keyboard 50 punch/slap

11 reading 31 point to something 51 kicking

12 writing 32 take a selfie 52 pushing

13 tear up paper 33 check time (from watch) 53 pat on back

14 puton jacket 34 rub two hands 54 point finger

15 take off jacket 35 nod head/bow 55 hugging

16 putonashoe 36 shake head 56 giving object
17 take off a shoe 37 wipe face 57 touch pocket

18 put on glasses 38 salute 58 shaking hands
19 take off glasses 39 put palms together 59 walking towards
20 put on a hat/cap 40 cross hands in front 60 walking apart

4.2 Training details

The experimental environment and configurations are listed in Table 2. The network has
been trained using the Adam optimizer. We train the model 700 epochs in total and the batch
size is set to 64. The learning rate is initialized to 0.0001 and falls exponentially by every
epoch at a rate of 0.99. To alleviate the problem of overfitting, we have appended the dropout
after Conv4, Conv5, Conv6, and Fc7 with a dropout ratio of 0.5. To improve the nonlinear
expression of the model and speed up the model training [19], we have appended Batch
Normalization after Convl, Conv3, Conv5, and Fc7. For the multi-classification SVM, we
choose RBF as the kernel function and set the regularization parameter Cost to 1 after
several comparative experiments.

Since the accuracy has an intuitive expression of the generalization ability of the model,
we choose the accuracy as the evaluation index of the model performance. The Model accu-
racy represents the proportion of the number of correctly predicted samples, to the number
of all predicted samples. The accuracy formula is given as

Accuracy = x 100% 29)

TP
Total
where TP denotes the number of correctly classified samples and Total denotes the total

number of samples classified.
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Table 2 Experimental environment and configurations

Device Version

Operating system Windows10

Python version 3.8

Torch version 1.9.0

CPU Inter i9-11900K

GPU NVIDIA GeForce RTX3080
Storage Samsung 16Gx2 DDR4

4.3 Ablation study

We have verified the validity of the proposed method on the open dataset NTU RGB+D. We
have conducted an extensive ablation on the effect of different components in the model on
the recognition, including the human skeleton description method, attention module, feature
fusion strategy, classification algorithm, and multi-stream data.

Human skeleton description method We test the effect of the two different modeling
methods on the model accuracy. According to Table 3, the accuracy of the human skeleton
description method proposed in this paper has been improved by 3.5% and 4.2% under
the X-Sub and X-View benchmarks, respectively. Our method considers the correlation and
co-occurrence between the joints, and therefore, has a higher recognition accuracy.

Attention mechanism The ablation experiments have been performed for the attention
mechanism and the multiclassification SVM module to demonstrate the contribution of dif-
ferent modules for this method. According to Table 4, the attention mechanism and SVM
can further improve the model accuracy. Particularly, owing to the X-Sub benchmark, the
addition of the attention mechanism increases the model accuracy by 0.2%. Further, the
model extracted features are fed into the SVM for training and testing classification, which
further improves the accuracy by 0.4%. Similarly, in the X-View benchmark, the addition
of the attention mechanism improves the model accuracy by 0.4%, and the SVM mod-
ule further improves the accuracy by 2.0%. The ablation experiments demonstrate that
the attention mechanism can effectively improve the model accuracy. Using the trained
convolutional neural network as a feature extractor, the extracted features train the SVM.
Finally, the classification task has been completed using a multi-classification SVM, and
the above operations can effectively improve the accuracy of the model. The machine learn-
ing algorithm SVM has been supported by the rigorous mathematical theory and has an
excellent classification effect. However, the deep learning model has exceptional feature
extraction ability. The above idea of using the deep learning model to extract the features,

Table 3 Effect of different human skeleton description methods on recognition accuracy

Methods X-Sub(%) X-View(%)
Original 83.2 88.4
Ours 86.7 92.6

Bold values indicate the best results
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Table 4 Comparison of different methods

Methods X-Sub(%) X-View(%)
3SCNN 86.1 90.2
3SCNN+CBAM 86.3 90.6
3SCNN+CBAM+SVM 86.7 92.6

Bold values indicate the best results

and then using the machine learning model, to complete the classification task has certain
applicability.

Feature fusion strategy The multi-person action description module is for extracting the
skeleton sequence information of each human body in the multi-person interaction action
by the convolutional neural network for feature extraction. Further, it performs the feature
fusion on the extracted feature vector of each person. The feature fusion strategies include
Concat, Mean, and Max. The experimental results with respect to the comparison of the
effect of different feature fusion strategies on the model recognition accuracy, are displayed
in Table 5. We find that the Max strategy is significantly better than the Concat and Mean
strategies. The Max strategy can preserve the integrity of the high-level features to the
maximum extent.

Classification algorithm There are several excellent algorithms for machine learning. We
have selected different learning algorithms to complete the classification task, for compar-
ing the generalization ability of such algorithms. The algorithms chosen for the comparison
include eXtreme gradient boosting (XGBoost), artificial neural network (ANN), and ran-
dom forest (RF). Before training and testing, the extracted feature vectors have been
pre-processed by standardization. The formula is given as

¥=x-w/o (30)

where u is the mean value and o is the standard deviation. According to Table 6, the SVM
has the highest accuracy rate of 92.6%. Owing to the rigorous mathematical theory, the
SVM algorithm shows the most robust generalization ability on the current dataset.

A3SCNN Ablation experiments have been performed using different data streams on the
proposed method in this paper for comparing the contribution of multiple data streams with
the method in this paper. The data stream includes joint 3D coordinate information C, joint
time-domain differential information 7, and joint space-domain differential information S.
The experimental results are listed in Table 7. Experimental results demonstrate that the

Table 5 Influence of feature fusion strategy on recognition accuracy

Strategies X-Sub(%) X-View(%)
Concat 86.1 91.5
Mean 86.3 92.1
Max 86.7 92.6

Bold values indicate the best results
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Table 6 Comparison of different classification algorithms

Methods X-Sub(%) X-View(%)
XGBoost 86.0 90.4
ANN 86.3 90.6
RF 86.5 91.1
SVM 86.7 92.6

Bold values indicate the best results

accuracy of two-stream data C+Sis 2.2% and 1.3% higher than that of the single-stream data
C for X-Sub and X-View benchmarks, respectively. The accuracy of the two-stream data
C+T compared to the single-stream data C has been improved by 4.8% and 5.3% for the X-
Sub and X-View benchmarks, respectively. The joint time-domain differential information
T and joint space-domain differential information S contain rich human behavior features,
which can effectively improve the accuracy of the model. The accuracy of C+T is 2.6%
and 4.2% higher than that of C+S in both the X-Sub and X-View benchmarks, respectively,
which shows that the joint time-domain differential information 7 contains more human
behavioral features than that of the joint space-domain differential information S. The three-
stream data C+S+T has the highest accuracy under two benchmarks, viz., the X-Sub and
X-View, with 86.7% and 92.6%, respectively. The above experiments fully demonstrate the
effectiveness of the method given in this paper.

The feature vectors Fc, Fr, Fs, and F,,; appearing in each level of the A3SCNN, for the
testing samples, are visualized using t-distributed stochastic neighbor embedding (t-SNE)
under the X-View benchmark. We have found that the network model can hierarchically
extract the features, and the features will gradually aggregate to facilitate the classification.
The dimensions of F¢, Fr, and Fs are 64 x 8 x 8, and the dimension of F,,; is 512 x 2 x 2.
The visualization results are shown in Fig. 6.

Using the three-stream data C, T, and S proposed in this paper, a multi-person feature
max fusion strategy has been adopted. The feature extraction network A3SCNN has been
pre-trained under the two different benchmarks, and the variation curves of the training loss
and testing accuracy that were obtained, are shown in Fig. 7.

The confusion matrix obtained by employing the method in this paper under the X-View
benchmark is displayed in Fig. 8, and the darker color indicates higher accuracy. From the
confusion matrix, the model can fully extract the co-occurrence features of the joints and
accurately identify the actions such as “throw”, “stand up”, and “sit down”. However, the
accuracy is not high for the nuanced and similar actions such as “reading” and “‘writing”,
“play with phone” and “type on the keyboard”. The accuracy rate is modest when the

Table 7 Recognition accuracy of the different data stream

Data Stream X-Sub(%) X-View(%)
C 81.4 86.8
C+S 83.6 88.1
C+T 86.2 92.3
C+S+T 86.7 92.6

Bold values indicate the best results

@ Springer



Multimedia Tools and Applications

=75 -50 -25 0 2 50 Ll -75 -50 -25 0 25 50 7

(a) Visualization of Fc with t-SNE. (b) Visualization of Fr with t-SNE.
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Fig.6 Visualization of different feature vectors with t-SNE

movements are similar. Furthermore, owing to the multi-person action description module,
the model is highly accurate in recognizing the multi-person interactions such as “shaking
hands” and “walking towards”.

4.4 Comparison with the classical methods

Here, we compare the method of this paper with the classical network model, as listed
in Table 8. The CNC-LSTM model first transforms the human skeletal features using the
network coding, and then uses the LSTM for the human behavior recognition. Compared
with this model, our method proposes an end-to-end feature extraction network A3SCNN
and employs the SVM for action classification, which is efficient and accurate. The HCN
model is an end-to-end, hierarchical, co-occurrence, and feature learning framework for the
skeleton-based human behavior recognition. Compared with that, the three-stream frame-
work of this paper’s approach can describe richer joint features. Furthermore, the embedded
attention module facilitates the network model to focus on the spatial-temporal features
of the critical joints. Compared with the two-stream CNN model, the three-stream data
of our method contains additional action features, which has a higher recognition accu-
racy. The ST-TSL model proposes a novel model with spatial reasoning and temporal stack
learning (ST-TSL) for long-term skeleton-based action recognition. Compared with that,
A3SCNN model has excellent advanced information extraction capabilities and can learn
the advanced features efficiently and easily. The ST-GCN model views the human skeleton
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(a) Train dataset loss value curve. (b) Test dataset accuracy curve.

Fig.7 Train dataset loss value curve and Test dataset accuracy curve

as the graph structure data and uses the graph convolutional networks for the human behav-
ior recognition. Compared with that, our method has the advantages from the need of a small
number of parameters such as the high efficiency and ease of scaling up. The DPRL+GCNN
model proposes a deep progressive reinforcement learning (DPRL) method to extract repre-
sentative frames from action videos and uses graph-based convolutional network model for
action recognition. Compared with that, the attention mechanism in our method can extract
richer action features effectively and the SVM has excellent classification performance.

In addition, we compare our work with the GCN-based methods in FLOPs and Params, as
listed in Table 9. As we mentioned in the Related Work, the GCN-based methods have huge
amount of parameters and involve matrix calculation, which requires a lot of computing
resources. PoseConv3D is a 3D-CNN model and still requires a lot of calculation. To sum

12345678 9101112131415161;

Fig.8 Confusion matrix of the proposed method on NTU RGB+D dataset
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Table 8 Comparison with classical networks

Methods X-Sub(%) X-View(%)
CNC-LSTM [43] 83.3 91.8
HCN [24] 86.5 91.1
Two-stream CNN [23] 83.2 89.3
ST-TSL [47] 84.8 924
ST-GCN [59] 81.5 88.3
DPRL+GCNN [50] 83.5 89.8
Ours 86.7 92.6

Bold values indicate the best results

up, our method has the characteristics of few parameters and fast calculation speed while
maintaining excellent recognition rate, which has great advantages for the application of
human skeleton behavior recognition tasks in reality.

5 Conclusion

In this paper, we proposed a skeleton-based human action recognition method by fusing
the attention-based three-stream convolutional neural networks and SVM. First, to extract
spatial-temporal features from skeleton data, we construct three data stream with diversity
and robustness to train A3SCNN. The added attention module theoretically allows a bet-
ter focus on the critical joint features, whereas the attenuation experiments of the attention
module show the effectiveness of the module. A3SCNN has been employed as a feature
extractor for extracting the spatial-temporal features of the joints. Further, the SVM has
been utilized for the classification task. The method in this paper achieves appreciable
results on the open dataset NTU RGB+D, with an accuracy of 86.7% under the X-Sub
benchmark, and 92.6% under the X-View benchmark. Inspired by the work [15], we will
explore the following aspects in future work. First, we will focus on constructing a data
structure suitable for CNNs from human skeleton data. In addition, we will try to optimize
CNN s structure to extract multi-scale spatial-temporal features for the nuanced and com-
plex actions Classification. Multimodal feature fusion [55] is also a key research direction in
the future.

Table9 Comparison with GCN-based methods

Methods FLOPs(G) Params(M)
ST-GCN(CVPR2018) [59] 16.3 3.1
2s-AGCN(CVPR2019) [45] 37.2 6.9
MS-G3D(CVPR2020) [33] - 6.4
PoseConv3D(CVPR2022) [15] 15.9 2.0
Ours 6.8 1.5

Bold values indicate the best results
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